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ABSTRACT 

The Schwartz Inequality is used to derive the Barankin lower bounds on 

the covariance matrix of unbiased estimates of a vector parameter,     The 

bound is applied to communications and radar problems in which the unknown 

parameter is imbedded in a signal of known form and observed in the pre- 

sence of additive white Gaussian noise.    Within this context it is  shown that 

the Barankin bound reduces to the Cramer-Rao bound when the signal -to- 

noise ratio (SNR) is large.    However,   as the SNR is reduced beyond a critical 

value the Barankin bound deviates radically from the Cramer-Rao bound 

thereby exhibiting the so-called threshold effect. 

A particularly interesting signal,   which has been widely  used in practice 

to estimate the range of a target,   is the linear FM waveform.     The bounds 

were applied to this signal and within the resulting class of bounds it was 

possible to select one which led to a closed form expression for the lower 

bound on the variance of the range estimate.     This expression clearly 

demonstrates the threshold behaviour one must expect when using a non- 

linear modulation system. 

Tighter bounds were easily obtained but these had to be evaluated using 

numerical techniques.     It is shown that the side-lobe structure of the linear 

FM compressed pulse leads to a significant increase in the variance of the 

estimate.    For a practical linear FM pulse of 1 microsecond duration and 

40 megahertz bandwidth it is shown that the radar must operate at an SNR 

greater than 10 dB if meaningful range estimates are to be obtained. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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I. INTRODUCTION 

An important problem in communications and radar theory is the 

estimation of a set of parameters (9.,   0~,   . . . ,   9     ) of a signal which has 

been corrupted by additive white Gaussian noise.    In particular,   the 

received waveform is assumed to be of the form 

r(t) = s(t;9_) + n(t) |t| = T (1-1) 

where s(t;9_) is a known function of t for each value of the m-row vector 

9.    In the radar problem 9, might represent an unknown time delay 

(target range),   9? an unknown doppler shift (target velocity) and 9^ an 

unknown carrier phase angle.    The noise term n(t) represents the 

Gaussian white noise and is assumed to have two-sided spectral density 

N   watts/Hz.    It is of practical and theoretical interest to determine how o r 

well a given estimation scheme can perform with respect to estimating 

the unknown parameters.    In this respect,   Barankin [l] has derived a 

general class of lower bounds on the moments of unbiased estimators. 

Kieffer [2] has used the Schwartz Inequality to obtain lower bounds on the 

variance of an unbiased estimate of a scalar-valued parameter.    Applied 

to the pulse-position modulation communications problem,   this bound 

was shown to yield considerable information regarding the nonlinear 

modulation threshold effect [3],    In this paper,  we use the Schwartz 

Inequality to derive lower bounds on the error covariance matrix for 

unbiased estimates of the vector parameter 9.    Then we specialize these 

results to the communications and radar problem as formulated in 

Equation (1-1) and apply the bound to the particular problem of estimat- 

ing the range of a target using a linear FM waveform over an incoherent 

channel.    It is shown that the side-lobes of the corresponding compressed 

pulse significantly affect the variance of the estimate of the time delay. 



II. THE BARANKIN BOUND 

Let Q be a sample space of points tu and let P(UJ /0) be a family of 

probability measures on 0 indexed by the parameter 6 taking values in some 

index set IT.    Assume these measures have a density function with respect 

to some measure \A,   i.e. ,   there exists a function p(o)/6) such that 

l p(E/9) = rP((ü/e)dn(u)) 

for all measurable sets E. 

Let g(- ) be a real valued function defined on IT and let g(« ) 

be an unbiased estimator of g(9),   i.e. ,   g(- ) is a real valued,   measurable 

function defined on Q with the property that 

Jg(uu)p(uu/9)du(uu) = g(9) (2-1) 

In Appendix A,  we have used the Schwartz Inequality to show that the 

variance of the estimator g(. ) when 0  is the true value of the unknown 
2 

parameter,   denoted aQ   (g),   is bounded below according to 

CT9  <«> * 

{   S      a.[g(e  ) - g(9)]}' 
i=l 

/ 
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p(uu/e) 

(2-2) 

p(uj/e)<^(u)) 

which is valid for all finite families (0.,a.).    It follows from (2-2) that, 
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p(u)/0)du(uj) 

where the 1. u.b.   is to be taken over all finite families of 9.en and real 
l 

a.. 
l 

Equation (2-3) is the Barankin bound.    Barankin has shown that 

this is the best possible bound in the sense that,   for each 9,   there exists 

an unbiased estimator that achieves it.    We will not demonstrate this here. 

The preceding argument has assumed no structure on the 

parameter space ir.    We now assume that TT is the m-dimensional Euclidean 

space E      of vectors 9 and we will use (2-3) to derive lower bounds for 
m "" * A * 

the covariance matrix,   E(0_ - 0_) (9_- 9)', '  of unbiased estimators 9_ of 9_. 

One special case of these lower bounds will be shown to be the familiar 

Cramer-Rao bound. 
A, 

Let 9 (uu) be an unbiased estimator of 9 ,   i. e. , 

E(£) =   JS (u0p((«/j9)d|J(u>) = £ 

for all 9_eE    .    If y_ is an arbitrary m-vector,   then g(uu ) = y_79 (ID ) is an 

unbiased estimator of g(9_) =_y  9_ and the bound given by Eq.   (2-2) can be 

applied to it.     This yields the inequality, 

The prime denotes matrix transpose 



{y'   S     a.^-i) 
afi   (g)   =Y_'E(9_-_9)(9-_e)'ir    >    ^i^i -^ 

/ 

1   n 
£    ap(u)/9.) 

i=l 

p(üu/e) 
p(uü/e)du(o)) 

(2-4) 

and this is valid for all finite sets of vectors 0 . in E     and all real a..    For 
—l m l 

a given set of 9. and any set of a.'s we choose,   (2-4) yields a lower bound 
2 ~~1 1 

on a0   (g). 

It is therefore reasonable to seek that set of a. which leads to the 
l 

least upper bound of (2-4).    The maximization is performed in detail in 

Appendix B where it is shown that the optimum set of a. for a fixed set of 

_9 . yields the bound' 

E(9  - 0)(§ - 0)' ^  A'1 + ($ - A_1A) A"V - A_1A)' (2-5) 

where 

A= B - A'A_1A (2-6) 

A = ramg«,/fü      .      Sln^/flJ    .p^e)^) (2.7) 
i 3 

i, j  = 1, 2, .   .   . m 

A =yay/i>  • ^|L . P(U) ,<,>*(„> (2-8) 

i = 1,   2,   ....  m; k = 1,  2,   . . . ,  n 

1* 
A matrix A is said to be less than or equal to a matrix B,  A <B,   if 

B - A is non-negative definite. 



i, k = 1,   2,   . . ,   n 

$ = [9_l, £2,   ..., £n] (2-10) 

th 
Notice that 9.,   i = 1,   2,   . . . ,   m refers to the i     component of the true 

parameter value £,  while 8.,   i= 1, 2,   ...,   n refers to an arbitrary value 

of the parameter £ other than its true value.    These vectors can be chosen 

at will and the number of them,   n is arbitrary.    For reasons which will 

become clearer in the sequel,   we refer to    {Öi}i = 1 as the set of test points. 

If we pick n = 0,   the second term on the right-hand side of 

Equation (2-5) vanishes and we obtain the Cramer-Rao bound. 

E(9 - 9)(9  - 9)7^ A'1 

For n > 0,  we obtain other bounds that are,   in general,   an improvement 

on the Cramer-Rao bound.    This follows from the fact that A is positive 

definite  (Appendix B) which,   in turn,   implies that the matrix ($ - A"   A) 

A~  .($ - A"  A)' is at least positive semi-definite. 



in. APPLICATION TO COMMUNICATIONS AND RADAR 

It is of  interest  to specialize the results just obtained to the 

problem of estimating the parameters of a signal corrupted by additive, 

white Gaussian noi se.    More precisely,  we are given a stochastic 

process r(t) of  the form, 

r(t) = s(t,9) +n(t), IM  =  T (3-1) 

where s(t,9_) is a known function of t for each 9_ and the n(t) is zero mean 

white Gaussian noise process with the covariance function E[n(t)n(s')] = 

N  6(t-s').     In addition we are given an unbiased estimate of 9_,   i.e.,   a 

measurable vector valued function,   0_(- ),   defined on the space of all 

sample functions r(. ) and satisfying 

E(S) = e 

We want to obtain a lower bound for E(9_ - 0_)(9_ - 8)   .     In this case Q is the 

space of all functions r(- ) defined on -  T ^ t £ T and p(u) /0) is the probability 

density of r(* ) relative to  the measure defined by the white noiee n(t) alone, 

i.e. , 

T T 
p[r(-)/9j = exp{Ti—   j r(t)s(t,0_) dt -  -^— f s2(t, 9_)dt} 

o        m o      m -T -T 

In order to calculate the A,   B,   and A matrices,   it is sufficient to 

evaluate the function 

G(g/,j';e)=r Pfr»/aX^">     pfo/ejdud») 
p  (ou/9) 



For the problem at hand,   this function is given by the expression 

T T 
exp^J     r(t)s(t;9')dt   exp ^— J       r(t)s(t;9_//) dt 

G(e',e";e) = E
! 

T 
i 

-T 
exp^- J     r(t)s(t;9_)dt 

T T 
exp^J     s8(t;£/)dt        exp^J      s3(t;e_")dt 

o     -T o   -T 

T 

-T 
exp^- J _s2(t;9_)dt 

^Ejexp^J     n(t)[s(t;£')-s(t;^)ldt   exp —L- J    n(t)fs (t;9_") 

-s(t;9)ldtj 

exp^ J^   [s(t;9_)-s(t;9,)|2 dt   exp ^ J     [s(ttf)-s(t£'')]a  dt 
T 

0 -T 

Now it is easy to verify that 

H- G exp -^ 

where x is a zero mean Gaussian random variable with variance 0"      .     In x 
our case 



T T 
x =    -J-   I     n(t)[s(t,0_') -  s(t,9_)] dt  +   Jjr-   J    n(t)[s(t,_9")   -  s(t,9_)] dt 

iNo   *-T o   -T 

T 
a  2 =   -^—   r [s(t^') + s(t,9") - 2s(t,0_)]2 dt 

o      -T 

Therefore, 

T 
G(9',e";e) = exp-j^ I' [s(t,e') - s^ejHsjt.e") - s(t,e)] dtf 

-   -   - lNo -T       ~ " J    (3-2) 

Using Eq.   (3-2),   it is possible to calculate explicit expressi ons for A,   B, 

and Aas follows, 

1   T 

N      J iNo   -T 

ö s(t,e_) a s(t,a.) 
09. 

i 
3ek 

dt (3-3) 

i,  k = 1,   . . . ,   m 

A =   iT J   Ve.*'"*    [s(t'^k} - s(t'i)] dt (3-4) 
o    -T i 

k = 1,   2,   . . . ,   n 

i =   1, 2,     . . . ,m 



1   T 

B = exp       ^-   J[s(t,9_.) -  s(t,0_)][s(tf 0_k) -  s(t,9)] dt (3-5) 
o   - T 

i,  k = 1,   2,   . . ,   n 

Using these relations the Barankin Bounds applied to the communications 

and radar problem becomes 

E(0-9)(9-9)'? A'1 + (S-T^A'V-A^A)' (3-6) 

where 

A= B - A'A^A (3-7) 

$  =[ir92,...,in] (3-8) 



IV. LINEAR FM RANGE ESTIMATION ACCURACY 

In the radar ranging problem a known signal 

a(t)cos(u)   t +cp(t)) |t| =  T/2 (4-1) 

is reflected from a stationary point target,   distorted in phase and 

observed in the presence of noise at the receiver.     The received wave- 

form can be written as 

a(t-T)cos[u)   t + co(t-T) + y] +n(t)      |t|   =T (4-2) 

where the parameter T represents the time delay or radar range while 

Y represents a random phase shift (uniform in [0,  2-rfJ).  A typical radar 

receiver attempts to estimate the unknown time delay by using a likelihood 

signal processor.    Since the radar must operate in a variety of noisy 

environments,   (N    large and small),   it is important to know how well 

a given signal is likely to perform for a range of signal-to-noise ratios 

(SNR).    By applying the Barankin bounds to the above signaling problem, 

we can determine the lowest values of SNR above which the radar must 

operate to give acceptable performances.     These remarks will become 

clearer as the analysis proceeds.    From Eq.   (4-2) we see that for the 

radar ranging problem the parameter vector is 

i-O (4-3) 

The linear FM waveform has been the subject of considerable 

interest in both practice and theory.    In the remainder of the paper we shall 

assume that the signal has the linear FM phase function so that 

10 



*(t>=2-t2 (4.4) 

where U = 2-rrWT,   W is the signal bandwidth and T the time duration.     In 

addition we shall assume that the amplitude modulation a(t) rises very 

rapidly,   but smoothly,   to the constant value v2E/T   when |t| = T/2 

and that it is zero when |t| > T/2.    Figure 1 illustrates a typical a(t). 

Then the signal we are dealing with has the functional form 

s(t;9_) = a(t-T)cos[(JU   t+£(t-T)    + y] (4-5) 

where uu    represents the carrier frequency in radians/sec. 

In Appendix C we have carried out the detailed manipulations which 

lead to the Barahkin bounds for the linear FM signal.    It is shown that the 

variance of the normalized delay error is lower bounded by the following 

expression 

E(T"To)     =       E/N      - ~Z~+^  A    £ (4"6) 

T o        \i 

where 

»i B ATi - JT *li (4-7a) 

(A)ij=expj"^b..j  -^r^a^+f^'l (4-7b) 

11 



A a(t) 3-42-H941 (1) 

V^ETT 

-T/2 T/2 
-►  t 

Fig.   1.   Atypical "on-off"  amplitude modulation. 
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b     = 1 -   —-i  cos (AYi)sin[^AT.(l -|AT.|)] 

2   ATi 

-  cos(AY.)sin[y-AT.(l - |AT.|)] (4- 7c) 
^AT. J 2      J '      J 
2      J 

 l-  cos(AY--AY.)sin[ü.(AT  -AT.)(1 -|AT.-AT.   )] 
^(AT.-AT.) '       J «        *       J l       J 
2 i       J 

a.  and a~ are vectors whose i      row is —1 —Z J 

aij = (±2 " AT-)cos (AVCOS^ATJ(1~'ATJ')] 

+        *   2 cos(AY.)sin[^AT  (1 - | AT   | )] 
4* AT. J J J 
2     J 

where the ± signs correspond to AT       0 

(4-7d) 

2j=   ^jJ—   ^-^cost^AT.d-lAT.I)] ;4.7G) a~. = 
T AT. 

AT. = (1. - To)/T 

Ay. = Y    - Y. 
J        °        J 

(4-7f) 

13 



Notice that the bounds depend only on the delay and phase differences 

T. - T   , Y . - Y    and not on the true values of delay and phase T   , Y   . J        o      3       o <     < o      o 
Since we know that-T/2 = T = T/2,   then we need study only the range 

-  T = T-T    = T,   or equivalently,   -  1 = AT. = 1.    It is reasonable to assume 

that the phase is uniformly distributed in [0, 2ir] so that the test points, 

AY.»   can be chosen equally spaced in the [0, 2ir] interval.    We are free to 

put the test points anywhere we like within the above intervals,   and for 

each set of these points we get a lower bound on the variance of the 

normalized delay error.     To gain some insight into how we might locate 

these points,   let us first examine the case in which there are no phase 

test points.    As a result the following simplified equations are obtained 

alj = (±2" äJT)COS [£ATJ(1 -lATjl)J (4-8a) 

—-i—-- sin[ü-AT.(l - I AT  |)] (4-8b) 
4 (AT/ L      J J 

+  • 

%. = 0 

where the ± sign corresponds to AT. <  0. 

b.. = 1 - - 
13 ^ 

—   sin[£-AT (1 -lAT-l)] -   — sint^-AT (1-|AT  |)] 
iT. M-AT. J J 

2        J 
(4-9) 

sin[| (AT. - AT.)(1 -I AT. - AT. ()] 
^(AT.   -AT.) 

14 



It appears that the significant terms depend on the quantity sin[L- x(l- |x| )]/ 

±r-x which is well-known to be the response of the filter which is matched to 

the linear FM waveform.    This filter response is used in the implementa- 

tion of the maximum likelihood receiver.    It is interesting that the Barankin 

bounds should lead to terms which depend on this receiver structure.    We 

know from physical arguments,   that the likelihood processor deviates from 

the Cramer-Rao performance when the noise becomes strong enough to cause 

the peak detector to lock on one of the sidelobe peaks of the matched filter 

output.    Since the Barankin bounds appear to be taking this sidelobe behavior 

into account,  we shall use this intuitive knowledge to justify locating the 

delay test-points at the sidelobes of the sin y x(l - |x| )/=■ x function. 

As an example let us choose two test points 

ATj = - AT2 = 6 

where 6 is the location of the first positive sidelobe.    For large time- 

bandwidth products we can approximate 

Ü-YM   _ l^h sin Ü sin jx(l -|x| ) sin=-x 

£* 

and therefore we choose j- 6 = 5ir/2 which leads to 6 = 2. 5/WT.     Therefore 

the approximation is fairly good for WT ^ 50.    Then 

cos £ 6(1 - 6) « cos if- 6 = 0 

and Eqs.   (4-8a),   (4-9) reduce to 

15 



a      = + WT/6. 25TT 

a12 = " WT/6-25lr 

a21=° 
a22 = ° 

r- 

bll   = b22 =Z 
1                L                      U-  c /l 1 s in T; 6(1 

25 
-6). 

26 

= 1.746 
5rr_ 
2 

b12 =b21 X -   —i- sin £6(1 - 6) - —-  sin  £(-6)(l-6) 
^6 Z |(-6) 

+ ^jj- sinU6(l -26) =   0. 746 

£6  »A 

Substituting these values in Eqs.   (4-7a) and (4-7b) we find that 

12 WT 
cp    = _cp    - 6 i T    -Tr-J^L- = 2.485/WT ;1      "^2 

(2TTWT) 
2    "'(6.25*) 

E E 12 /   WT An = A22 = exp 1. 746 |f- ^ ,     , ^-^ 
o o     (2TTWT)       y 

= exp 1. 746 ~- - 0. 00078 ~ 
o o 

exp 1.746 ^ 
o 
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A,- = A71  = expO. 746   =   +   J 12 /   WT 

= exp 0.746^   +0.00078   |j- 
o o 

■IT 

exp 0. 746 

2 

N o 

In this case the A-matrix is easily inverted to give 

All " A12 lA12      All 

and the quadratic form appearing in Eq.   (4-6) reduces to 

T   - 1 2 
C£   A"  C£ = 2 cp1 /(Au - A12) 

2 
2.485 2 1 

WT     exp 1.746-^r- - ■ exp 0. 746 —— 
o o 

12.38 exp (-1.746^ ) 
o 

1 - exP (- ^—) 
o 

17 



Substituting this  result into Eq.   (4-6) we obtain a lower bound on the variance 

of the normalized delay error,   namely 

1 TT/A \Z   > 
ZT E(T-To}    = z 

TT 'Z 
(WT) N o 

40. 6 ^^ exp (.1.746^) 
o o 

(4-10a) 

= 1 + 

1 - exp (-^-) (4. 10b) 
o 

When -|L  is large,   T (JjL) * l and 
o o 

1 2   > 
E   (T-T 

1 1 
2              7 

3       (WTf 
E 

N o 

,2 N        o' 

which is the Cramer-Rao lower bound for the linear FM waveform.     It has 

been shown [4] that the performance of the matched filter receiver achieves 

this bound when   -=^  is large,   but it is not known when the performance 
o                                    E 

begins to deviate from it.     Letting TT=  => 0 in Equation (4-10b) we see that 
E ° 

T (T-=—) =*°° and the so-called threshold effect has taken place.    For this reason 
o                        E                                                                                                 E 

we refer to T (■£= ) as the threshold function.     The value of -r= at which 
N o ^o 

the tighter bound of Equation (4-10a) deviates from the Cramer-Rao bound 

is referred to as the threshold operating point.     Therefore,   Eq.   (4-10a) gives 

the first analytical expression which determines the best performance the 

matched filter can ever achieve.    Expressed in db the lower bound on the 

normalized delay variance is 

18 



,n i ;1 rw« ,2L   > ,n , (2TTWT)
2

   .     E 
10 lo«10   lZ2- E(T -To'!=   "  10 lo§ 10 12 NT 

I o 

+ 101og
10

T(\ 

(4-11) 

In Figure 2 we have plotted the bound for the case WT = 100 and note that 

changing the time-bandwidth product merely shifts the curve by a constant. 

The figure clearly shows the threshold effect which we referred to. 

One must be careful to give the correct interpretation to the 

bound described by Eqs.   (4-10b) and (4-11).    It states only that the perform- 

ance of any radar which uses a linear FM waveform to estimate range can 

be no better than that specified by Eq.   (4-11).    For example if WT = 100 

and the input SNR is 2. 5 dB,   then the normalized range variance must be 

something greater than -41.0 dB which is 7 dB larger than that predicted 

by the Cramer-Rao bound. 

The bound can also be used to give a lower bound on the input 

SNR which must be used to give acceptable performance.    The Barankin 

bound deviates from the Cramer-Rao bound when the noise at the sidelobe 

peaks becomes significant.    This means that radar will be making large 

errors in range and the performance becomes unacceptable.    If we locate 

the threshold operating point at the value of the input signal-to-noise ratio 

at which the Barankin bound deviates from the Cramer-Rao bound by 1/2 dB, 

then if only the two largest peaks are considered,   Fig.   2 shows that the 

radar must be operated at an input SNR greater than 6 dB.     This is not a 

useful result from a practical point of view since the radar usually operates 

above 13 dB,   the signal-to-noise ratio at which target detection occurs with 

a suitably small false alarm probability.    Since the curve gives only an 

upper bound on performance we cannot say conclusively that the practical radar 

19 
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Fig.  2.    Lower bound on range variance using two 
side-lobe test points. 
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operating at 13 dB input S NR will always avoid the threshold effect.    However, 

we can obtain a tighter set of lower bounds by increasing the nurrber of delay 

and phase test points.    In these cases,   the A matrix cannot easily be inverted 

analytically and we must resort to numerical techniques. 

In Figure 3 we   show the effect of taking more of the sidelobe peaks into 

account for a waveform having a time-bandwidth product WT = 40.    We have 
plotted the lower bound for the cases where the test points are located at the 

first two negative peaks,   then consider the additional next two positive side- 

lobes,   etc. ,   until all of the peaks are accounted for.    When all the sidelobes, 

are considered a considerably tighter bound is achieved. 

In the next experiment we located the delay test points at the maximum 

number of sidelobe peaks and selected the phase test points equally spaced in 

the [0,   2TT) interval.     That is,   if M is the number of phase test points,  we set 

AYi = (i-1) |M  ., ,   i = 1,   2,   .   .,   (M+l).    Figure 4 shows a sequence of curves 

which demonstrates the effect of increasing the number of phase test points. 

Numerical results were obtained for several time-bandwidth products up to 

WT = 40.     It was found in all cases that no significant change could be ob- 

served when more than four phase test points were used,   and that the lack 

of phase knowledge results in a loss in potential performance of about 5 dB 

in all cases. 

In a practical radar system evaluation,   one would like to relate these 

bounds to potential range accuracy.     The range of a target,   R,   is related to 

the round trip time delay as R =   c T 

where c is the velocity of light (3 x 108   meters/sec) and therefore,   the stand- 

ard deviation of the range estimate,   a    ,   is given by 
XV 

1 1 
CT   r     1 a     =[E(R-R  P]—=^[-i-   E(T-T)»]   2 

(4-i2; 
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Experiments have recently been conducted which use a linear FM waveform 

of 40 microseconds duration and 1 megahertz bandwidth.     Therefore the 

QP  corresponding to this pulse can be computed using Equation (4-12) 

and the data used in plotting Figure 4.    The results are shown in Figure 5. 
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V. CONCLUSIONS 

A simpler derivation of the Barankin bound for the variance of 

unbiased estimation of vector parameters has been derived.    Under the 

assumption that the parameters are estimated on the basis of a signal 

imbedded in additive white Gaussian noise,  we have reduced the bound 

to a form which is suitable for numerical evaluation.    It is shown that the 

variance depends on two terms; the first,  which is the Cramer-Rao bound, 

involves the structure of the signal in the vicinity of the true parameter 

value,   (fine structure),  while the second term takes into account the system 

performance at parameter values far removed from the true values (gross 

structure).    It is this remarkable property of the Barankin bounds which is 

so useful for evaluating system performance.    Applied to the problem of 

estimating target range using a linear FM waveform,  we see that the fine 

structure determines the performance in the large SNR region while the 

gross signal structure dominates when the SNR is small.    The bounds are 

extremely useful from a systems design point of view since they yield the 

SNR at which the transition in performance takes place.    Usually the 

performance is acceptable when the fine structure is predominant.    For the 

waveform under study,   it was shown that the radar should operate above 

10 dB.    Below this value,   degradation in performance was rapid.    Although 

adequate detection capability requires an input SNR above 13 dB. ,   there is 

no reason why the system could not shift   to  lower SNR's when the target is 

being tracked.     The bound could then be used to give lower bounds on this 

tracking SNR. 

It is interesting that the bounds derived here can be related to the 

side-lobes of the linear FM matched filter output.    It has long been a design 

criterion to use waveforms which have a low   side-lobe structure.     The 

Barankin bounds lead to the first analytical evidence that this is indeed a 

good design criterion. 
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Conceptually the effect of an unknown doppler shift can easily 

be incorporated into the analysis although the mathematical manipulations 

become somewhat more complicated.    However,   it would be of interest to 

see how much the lack of knowledge of the target's velocity costs in 

relation to the accuracy of the range estimate. 

Currently under investigation is the derivation of an upper bound 

for the variance of the delay error when the range is esimated using a 

matched filter receiver.    In conjunction with the lower bounds presented here 

the tools for the thorough analysis of the ranging performance of a radar 

will then be availab le. 
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APPENDIX A 

The following is an informal derivation of the Barankin bound. 

Let 0 be a sample space of points uu and let P(uu /0) be a family of probability- 

measures on Q indexed on the parameter 9 taking values in some index set 

ir.    Assume these measures have a density function with respect to some 

measure \i,   i.e. ,   there exists a function p(uu/0) such that 

P(E/0)=  fp(uu/e)dn(uo) i 
for all measurable sets E. 

Let g(. ) be a real valued function defined on ir and let g(- ) be an 

unbiased estimator of g(6),   i.e. ,   g(« ) is a real valued,   measurable function 

defined on Q with the property that 

Jg(uü)p(o)/e)du(uu) = g(0) (A-l) 

We now obtain a lower bound on the variance of any such g(. ). 

For any finite set of points 0 .eir,   i = 1,   . . . ,   n and any set of real 

numbers a.,   i = 1,   . . . ,   n,   it follows from (A-l) that 

n N 
Jg(u>)E      a.pfuj/e.jdiiju)) =S    a.g(0.) (A-2) 

i=l i=l 

N 
We subtract E    , a.g(0) from both sides of (A-2) to obtain 

n n 
J[g(w) -g(P)]Z      a.p(aj/0i)d|a(aJ) =S      a [g(9.) - g(0)] (A-3) 

i = 1 i = 1 
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an equation valid for 0 .GIT,   i = 1,   . . . ,   n,  all real a.,   i = 1,   ...,   n and all 

G   IT. 

Equation (A-3) can be rewritten in the form, 

n 
£   a.p(u)/0.) 

J[g(o)) -g(e)] i-^^T7Fr~F(uü/e)du(uj) 
n 
2     a.[g(e.) - g(9)] 

ü = 1 l       l 

(A -4 

Applying the Schwartz inequality to the left-hand side of Eq.   (A-4),  we 

obtain 

r "I     I 2 
g(9i)-g(e)Jä        J[g(uu) -g(9)]    P(uu/9)d|i(u)) 

i = 1 L 1       I 

/ 

n 
S    ap(uo/0.) 

i = 1  * 

P(OJ/9) 

(A-5) 

p(uu /0)djj(uu) 

The first term on the right-hand side of Eq.   (A-5) is the variance of the 
2 estimator g(» ) when 0 is the true value of the unknown parameter,  a      (g). 

We now have the inequality, 

°Q
2(g)s 

{J^W- g(e)] 

/ 

n n 2 
S    ap(uu/0  ) 

i = 1  1 

p(u>/9) 
p(uu/0)du(uu) 

(A-6) 

valid for all finite families {0.,a.}. 
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APPENDIX  B 

In  Section  II,   we   showed  that 

ti 

Cy'   £ a.(e. . e_)}' 
y{E(8-e)(£-!)'}£ = 

/ 

n TZ" 
Z  aip(u)/e_i) 

=1    p(uu/e_) 
p(uu/9)d^i(uu) 

This lower bound is valid for every set of 9.eE     and all real a..    We now 7 — l    m i 
assume a fixed set of 9. has been specified and then seek the set of a. which 

—!I r 1 

leads to the least upper bound of (B-l).     To do this we now specialize some 

of the 9 . 's and a. 's.    Assume n > m and define 
—l l 

9 . = 9 + e.e.   , i=l,   ...,m 
—l     —       l—i 

2-m+l " 1 

where e. / 0 is a real number and e. is the i     unit vector in E    ,   i. e. , 
l r —l m' 

i"\ 

li = l    place 
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Further define 

X. 
a. =   ,      i = 1,   . . . ,   m 

l       e. 
l 

m    \. 
= - ,z.   x 

*m+l "      i-1  e. 

for arbitrary real \.'s. 

The remaining 6_.'s and a.'s,   i=m+2,   . . . ,   n are left arbitrary. 

With these definitions,  we can write 

<    n \   Z n 
\    E  a.p(uu/e_.)l        =     E    a.akp(uu/e_.)p(u)/e_k) 
( i=l    x ) i,k=l 

m+1 
£     a.akp(uj/ei)p(uü/ek) 

i, k=l 

n 
E a.akp(üJ /e_.)p(uu /0_k) + 

i, k=m+2 

m+1       n 
+ 2      E E        a a  p(uj/9.)p(w/9   ) 

i=l      k=m+2 
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m 

i, k=l 

p(uü /9_ + e .e.) - p(uu /6_) p(uu /e_ + e^) - p{m /9_) 

G . 
l 

m n p(uu/0_) + e.e.) - p(uu/0_) 
+ 2   s S X.a      —— —    pdu/e^) 

i=l    k=m+2 i 
^k, 

n 
+      2 a a  p(o)/e.)p(u)/e, ) 

i,k=m+2   x k _1 ~k 

It now follows that the denominator of the right-hand side of Eq.   (B-l) 

approaches the limit 

/ 

n 
S  a p(uu/e_) 
i=l 

P(Uü/0) 
p(uü/e)du(uu) 

G.-O 
1 

i=l, . . . ,m 

m fölnp(uü/0_)        d lnp(uu/0j 
s    xixk J oT    —~ Pto/e)du(«j) 

i,k=l ae, 

m      n 

+ 2    E        r X.a. 
i=l    k=m+2  x k    J 

dlnp(uu/_0)      pdu/e^) 
äei p(u)/e) 

p(uu/e)du(uu) 
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n r p(u)/e.)       p(uj/e,) 

+ aai, 
i, k=m+Z P(U) /e_)        p(uj/e) 

p(uu/e)dp(uu) 

where   -^— denotes partial differentation with respect to the i      component 

of 9.    This1 last expression can be written in a compact form by introducing 

the matrices 

D= 

A 

m x m 
----- 

m x (n- 1-m) 

(n-l-m) x (n-l-m) 

A = 
/- 

3 lnp(uu /9_) 

-wr 
d lnp(uu/e_) 
 £g       p((»/e_)d|j(uu) 

A = 

/• 

d In p(uu/&)       p(aj/^+l}      t   le>xA t  \ 
de. 

i = 1 ,   . . . ,   m 
k = m+1,   . . . ,   n- 1 

B = 
'/• 

p(uü/£i+1) 

P(u)/i) 

and the vector 

p(u)/0_) p(u) /e)d)jL(cjü) 

i, k=m+l,   . . . ,   n- 1 

i'=[Xr   ....  Xm,  am+2,   ....aj 
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With this notation,   the limiting form of the denominator of the right-hand 

side of Eq.   (B-l) is l' D l_.    It can be shown that if g(0_) is not constant and 

if there exists an unbiased,   finite-variance estimator of g(0_),   then the 

denominator of Eq.   (B-l) can never vanish.    It follows from this fact that 

the matrix D is always positive definite. 

With the special parameter values chosen,   the numerator of the right- 

hand side of Eq.   (B-l) becomes, 

rn 1^      r m m l2 2 
y'     2   a.(e.-e) =   y'.    2   \ e. + y/   .       E    a (0     - 9_) =(j'Nl) 

[       i=l      1_1     " [        i=l     1  l i=m+2    l J 

where N Je 1...,em,   (§ m+r 9),..., (0^9)1 
L mx(n-l) J 

We have now obtained the following form of the Barankin bound, 

y'E(£ -Dd-e/ya      ffi'ffP  (B"2) 

valid for all (n-1)-dimensional vector sj, and all choices of 0^,   i=m+2, 

n.    We now maximize the right-hand side of Eq.   (B-2) with respect to I. 

This can be done via the Schwartz inequality as follows, 

.  l     I    2 
(y' Nl)Z (y'ND   7 D 2l) . 

I'DT     = " i'Di  *i! ND~ N'* 

Therefore, 
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-U./ y' E(8_ - 9_)(<§_- 0_)' y_^ y'  N D     N'y_ 

or,   equivalently 

-1 E(e - e)(S - e)'  ^ N D"1 N' (B-3) 

for all choices of 0_.,   i=m+2, . . , n. 

The relationship between the bound given by Eq.   (B-3) and the Cramer - 

Rao bound can be brought out by means of   Frobenius1  formula for the 

inverse of a partitioned matrix.    Applied to the D matrix this formula reads, 

D -1 A"1 + A_1A A^A'A"1 

-A-VA"1 

-A-W1 

.-1 

where A = b - A'A" 

Noting that 

where 

we can write 

= r i    «I 
[rnxm 

= [i m+2-^ • • • e  -el -n-J 

ND_1N' =A_1 + A^AA^A'A'1 - A^AA'V 

A_1A' A'1 + SA'V 

-1 -1.   v     ."I -1 
= A      + (§ - A    A) A     (§ - A"  A)' 
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Therefore,   our bound can be written in the final form, 

E(§ - e_)(e . e_)7 ^ A-1 + ($ - A_1A) A_1($ - A"*A)' (B-4) 

If we pick n = m+1,   the second term on the right-hand side of Eq. 

(B-4) vanishes and we obtain the Cramer-Rao bound. 

E(6_- e_) (ö - e_)' > A"1 

For n > m+1,  we obtain other bounds that are,   in general,  an improvement 

on the Cramer-Rao bound.    This follows from the fact that positive definite- 

ness of D implies positive definiteness of A,  which,   in turn,   implies that the 

matrix ($  - A"  A) A     (§ - A~ A)' is at least positive semi-definite. 
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APPENDIX C 

In this  section we will evaluate the Barankin Bounds,   Equations  (3-3) 

to (3-8) for the linear FM waveform.    We begin by computing the A-matrix, 

Eq.   (3-3),   where 

ds(t;_9o) as(t;9o) 

V>T-     J"        —55T -M—       dt <c-» J O -°° 1 j 

i, j.   = 1, 2 

We use the notation 0    to denote the true value of the parameter 9_.     The 

parameter vector is given by 9    = T,  9     = y and the signal,   s(t;9_) is 

s(t;0) = a(t-T)cos[uü t + y-(t-T)2 + y] (C-2) 

so that 

—ST=2.r.i(t.T0)co.[aict + ^(t-To)   +YO] 

+ U(t-To)a(t-To)sin[uJct+2i(t-To)2 + Yo] (c.3) 

-3Y »(t-T0)>in[»ct + 7(t-To)    +Yo] (c.4) 

As an example of the type of manipulations involved,   we calculate the first 

term in detail 

M*Z(t-T0)co.2[»ct+^(t-T0f+Y0] 

- 2u(t-TQ)a(t-To)a(t-To) cos[o)ct + £ (t-TQ) + yj sinftt^t + £ (t-TQ) + yj 

+ U2(t-T   )2a2(t-T  )sin2[u) t + (t-T  )+YJ }   dt o o c o        o   1 (C-5) 

38 



Using standard trigonometric identities we get terms at DC and at 2UJ   .     The 

latter terms can be neglected and we obtain 

NoAll  =1   I    fä(t-T0)]2dt  + ^   f    (t-To)2a2(t-To)dt 
_oo _c 

(C-6) 

Theoretically the modulation a(t) is usually assumed to be 0 for   |t| > T/2 and 

\2E/T  for  |t| = T/Z in which case the first integral above does not exist. 

However,   in practice such a discontinuity cannot occur due to the bandlimitation 

imposed by the transmitting and receiving equipment.    In this case a(t) will be 

a  "smooth" function and the contribution from the first term would be negligible 

compared to that of the  second.    We shall therefore ignore its effects. 

Evaluating the second integral we obtain 

(C-7) 

2^2 
All 12 N o 

Using similar manipulations it is easy to show that 

A12 " A21  " ° (C-8) 

A22      N o (C-9) 

Because of the simple  structure of the A-matrix,   it is easy to calculate its 

inverse which is 

12 
2~2 

A     " ETN o \  0 1/ (C-10) 

Next,  we compute the A-matrix defined in Eq.   (3-4) as follows: 
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j_   r-  Ss(t;j0) 
[s(t;a.) -  s(t;9o)]dt 

(C-ll) 

A2j =r 
1        f   3s<t;io> 

O      -» ÖY 
[s(t;a )- s(t;9o)]dt (C-12) 

W e use aj to denote the value of the parameter 9  other than its true value. 
First we evaluate the term 

roo   3s(t;0_  ) r°o 
i       r —  •   s(t;9  )dt =  I     i-a(t-T   )a(t-T   )cos   [uu  t+!±(t-T   )+ V   ] 

*T v   —o; )       v       o'   v       o L   c       2 v       o'        oJ 

_00 _00    V 

+ u(t-To)a2(t-To)sin[uuct + |(t-Tof+Y0]cos[a)ct+^-(t-Tof+Yo]|dt 

= 0 (C-13) 

a result which follows from the fact that a(t) is assumed to be an even function. 

Therefore 

roo   ös(t;0   ) 
NoAlj = J^ -^F— s(t;*j)dt 

j     |-a(t-T )a(t-To)cos[ 

B 

(JU  t + =-(t-T   )   +Y   ]COS[JU   t + ^(t-T.)   +Y.1 
c       2 v       o oJ ■  " 

+ u(t-T   )a(t-T   )a(t-T.)sin[uj t + i(t-T   )
2

 + Y Jcos[uü t + £(t-T.)   +y.]> 
O O J C £ O O C £ J J    I 

Using the trigonometric identities 

fit 

C-14) 

cos A cos B = 2-[cos(A+B) + cos(A-B)] 

lr    • 
(C-15) 

sin A sin   B = T[sin(A+B) + sin(A-B)] 
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we find that 

N A..  = o     lj "I    ^(t-T.JMt.T^cosfuMT.-T^-^T.^T^^Y^Y.Jldt 

00 

+ 2   fii(t-T0)a(t.To)a(t-Tj).in[u(TrTo) - ^T.2-TQ)
2
+ (YO-Y.)]dt 

(C-16) 

It is instructive to evaluate the second integral first.     Using the fact that a(t) 

rises very quickly to the value \ 2E/T ,   we can use the following approximations: 

Case  1: T. - T   1 * T 
J      ° 

a(t-T.)a(t-T   ) « 0   for all t 

Case 2: T. - T    >0,       T. - T       < T 
jo '   j       o' 

a(t-T.)a(t-T   ) 
J o 

2E/T        - T/2 +T. < t < T/2 +T 
jo 

0 otherwise 

Case 3: T.-T    < 0   i   IT. - T    I < T jo 'jo1 

a(t-T.)a(t-T   ) jo7 

2E/T - T/2 +T    < t < T/2 +T. 

0 otherwise 

If we integrate term 2,   T?,   between the limits x and y,   then we obtain 

N >T2 =T I   (t-T0).in!ut(TrT0)-J^.T^+tY^Yjlldt 

= T??pp {(t-T0)cos[ut(T.-To)- ^-T^tY.-Yj)] 

-WFO si*"Tj-To»-i<VTo»+<VV]f 
J      o 
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Using the appropriate limits for each of the three cases we see that for Case  1, 

N   T01   =0.    For Case 2,   we set x = - T/2 +T. and y = T/2 +T     so that o   Zl j '       ' o 

NoT22 = JL_JT co8[u(T + To)(TrV.^(Tj
2.To

2
) + (Yo.Y.)] 

-Y,)]} 

E j    . 
 T \ S1 
UT(T.-T    ) ( 

-   (- -£ + T.-T   ) cos[u(- -T + T.)(T.-T   )- i£(T.  - T    )+ (Y 2        j      o' 2       J      J      o7     2 v  j        o 

r . -   w-    -  ,   U,-2   T2 

j     °' 
in[u(T + TQ)(T -To)- £(T,  -0 + (YA-Y.)] 

>in[u(- 7r+T.)(T.-T   ) - y (T,  -T    ) + (Y 'o-jlJ ■TT-,j»Y1o|-7,'lj-',o'T"o-^ 

Expanding the angles which appear in this equation we obtain 

"<T+V<Tj-To> -W-To2) + (W =  ^.YjJ + ^-T^tT-tTj.T^] 

T+T   )(T.T   )_!i(T
2_T

2) + (Y   -Y.) = (Y   -Y.)-T(T-"T   )[T-(T.-T   ) 
2       o      j     o      2X  j       o o     j o     j        2V  j     o L j     o 

We now employ the definitions 

a = (vo-Yj) 

ß=|(T.-To)[T-(T.-To)] 

and rewrite the preceeding equations as follows 

-   E r ,_.at. /_    n,l  ,   E ,_    nx N   T o 77 = 7/"    T   x  [cos(a+ß)+cos(oc-ß)] + -= cos(a-ß)+ ~ [sin(a+3)-sin(a-ß)] zz   Z(yv T UT(T.-T r 
(C-18) 

Then if we use the trigonometric identities 
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cos(a+ß) + cos(a-ß) = 2 cos a cos ß 

sin(a+ß) -  sin(a-ß) = 2 cos a sin ß (C-19) 

we obtain 

j   ° 
T22 = W^T)  co.(Y0-Yj)co.^(TrTo)[T.(TrTo)] 

+ $co8{(Y0-Y.)-|(Tj-To)[T-(T.-To)]} 

2E i-Li 
+ UT(T.-T   )2

c08(vo-Vj)'^-To>[T-(Tj-To>» (C-20) 

We repeat the same calculation for Case 3 by setting x = - T/Z +T    and 

y = T/2 + T. so that 
J 

NoT23 = T(?^){(T + T
j-V

cos[u(T + T
j)^-V-2(T

j
2-To)+VY

j>] 

+ T cos[U(.T + v(T__To) _ U(T,2_T2)+ (YQ_YJ)]J 

UT(T..To 
r {sin[u<5+T.)(T.-To)- |(Tj2-To2)+ <VYj 

U,   2      2, 
'o-j'lJ -  sin[a(- 7 + T )(T -T   ) - 7(T    -T    ) + (Y. 

Z      o     j     o       ^    j       o o     j    j (C-21) 

Expanding the angles,  we get 

U<- ? + To)<Tj-To)- ^Tj2-To »+ <VYj> = <VYj> " 7<Tj-To)tT + <Tj-To)] 

and now we define 
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a = (YO - Yj) 

P  =!(T;-TJ[T+(T;-TJ] jo J      ° 

and rewrite the preceeding equations to get 

NoT23 = 2(J
E

T   ) fcos(a+ß) + cos(a-ß)] - ~ cos(a+ß) 
f   ° 

+ 2[sin(a+ß) "  sin(a-ß)] 
UT(T.-T    ) „. 

J      o (C-Z2) 

Making use of the identities used for Case 2,   we obtain 

-E ,..     . %       ra, Tz3--jSncos{yo-^^os^Tro)[T-]Ti-ToU] N o 
J     ° 

-f cos[(Yo-Yj) + |(TrTo)[T-   IT.-TJ]] 

+ 51 ,  cos(y   -Y.) sin[|(T     T   )(T- |T -T   | )] 
UT(T.-TO)

2 °    J J     ° J     ° (C-23) 

There remains the computation of the first term,   T,,   for each of the three 

cases.    Again we make use of the fact that a(t) rises very quickly to the value 

V 2E/T . but this time we use the approximations: 

Case   1: T.-T       2>  T 
J      o 

a(t-T.)a(t-T   ) = 0      for all t 
J o 
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Case 2: T.-T    > 0 T.-T       < T 
J     o j     o1 

a(t-T.)a(t-TQ)» ^- 6(t-T   -T/2) 

Case 3: T.-T    < 0 IT.-T   I   < T jo j      o1 

a(t-T.)a(t-To)« l£^6(t-To+T/2) 

where 6(t) denotes the Dirac delta function.    Now if we integrate term 1, 

Eq.   (C-16),   for Case  1 we get N   T..   = 0,   for Case 2 we get 

= +$co.t(Y0-Yj) + ^Tj.To)[T.(Tj.To)]J (C_24) 

and for Case 3 we get 

= -f COS{(YO-Y.)-£(T.-TO)[T-1T.-TO!]} (C_25) 

Finally we combine terms  1 and 2 which for Case  1 yield A. .  = 0.    For Case 2 

we combine Eqs.   (C-20) and (C_24) to get 

E/N 
A..   =  -   .        „  °   COS(Y   -Y.)cosfc(T.-T   )[T-(T.-T    )]] 

lj (Tj"To) °     j J     ° J      ° 

E/N 
+ ^^{cos[(Yo-Yj)+^(Tj-To)[T-(Tj-To)]] 

+ C08[(Y0.Yj)-|(Tj-To)[T.(Tj.Tj]] 

2E/N 
 2 cos(Y0-Y.)8in{7(T-T   ,[T- (T-TO)]} 
T.-T    ) J J J UT, 

J      o 
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Using the identities in Eq.   (C-19),   we obtain the final result for Case Z, 

T.-T    > 0, 
J      ° 

'lJ=^o{^COS<VYJ)COS^<TJ"T°)tT"(TJ"T° 

+ ^,cos(Yo-Y.)cos{|(T -TQ)[T- (T.-TO)]) 
J J J 

)]} 

— 2cos<Y
0-Y;>sinf2(VT

0
)[1 - (W^l 

-T<W J J J > (C-26) 

In a similar way for Case 3,   T.-T    < 0,   we combine Eqs.   (C-23) and (C-25) to 

get 

J =^o{<^  coS(Yo-Y.)cos{H(T..To)[T. IT.-TJ]} Au 

- TCOS(YO-YJ)COS{^(T.-TO)[T- |T.-TO|]} 

+ i—2 cos(Y0-Yj)sin{^(T.-To)[T- IT.-TJUJ 
 2_ 

WT(T-To c.27 
J      ° 

The second row of the A-matrix is defined by 

A2j=N-    J      "SV  [s(t;a)-s(t;£o)]dt 
J <-» CD -' o     -00 

As before we first evaluate the term 

-»  ds(t; 9   ) r»00    o o o 
^—^-stoe^dt - - j     a   (t-To)sin[u)ct+^(t-To)   +Yo]cos[uuct+^(t-To)   +YQ]dt 

_CO -00 

= 0 
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since we are ignoring the effects of the terms at 2UJ  .     Therefore 

••  ds(t;e  ) 
A 

—.   ~°    s(t;a.)dt = -   '   a(t-T   )a(t-T.)cos[uu  t+~" 
o   2j dy o c      2 

s(t;a.)dt=-  '   a(t-T   )a(t-T.)cos[o)  t+=-(t-T   )   +y -J J„ ° J c      2 v       o;       ToJ 

B 

sin[o)  t + ~(t-T.)    + Y.] dt 
c       L J J 

and using the identities in Eq.   (C-15),   this reduces to 

NoA2j = " I ra(t-To)a(t.T.)»in[Ut(T.-To)- £<T.2-T2) + (Y0-Yj)]dt 

0 for T.-T      > T 
J     ° y 

UT(TE-T    )     COs[ut(T      To). ^(T2-To
2)   +  (Y      Y   ,] 

We perform the evaluation for the case where T.-T    > 0 by setting x = -T/2 + T., 
J J 

y = T/2 + T    so that y ' o 

N 
U,   2      2, 

0A2j   =   +    UT(T.-To)    tcOs[u(^ + To)(T.-To)-  £(Tj   -TQ ) + (YQ-Yj)] 

-C08[u(-^+Tj)(TrTo).^(T.2-To
2) +  (Y0-Y.)]) 

-2E 
uT 

1^  8in(Y0.Y.)8in^(TrTolT-(TrTo)]] 
J     o 

(C-28) 

a result which follows from the manipulations performed for A. ..    When 

T.-T    < 0 we set x = -  T/2 + T   ,   y = T/2 + T. and obtain 
jo o j 

N A-. =        "2E v sin(Y   -Y. )sin& (T.-T   )[T+(T.-T   )]} o   2j     UT(T,TJ VYo   V       l?v  j     on j     o'JJ (c.29) J      ° 
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Equations  (C-28) and (C-29) can be combined into the single expression for 

|T.-T    I  < T 1   J      o 

-2E UM        .   v rU, AZj-aT(T.-T   )Bin(Y0-Yj)sin^(T-To)[T-|T-Tol]} 
J J      ° J J J (C-30) 

The B-matrix was defined in Eq.   (3-5) as follows 

-00 

B..  = exp^    |     [s(t;a.) -  s(t;io)][s(t;a.) -  s(t;9o)]dt 

First we evaluate the term 

s(t;a.) s(t;a.)dt=  '   a(t-T.)a(t-T.)cos[uu  t+y(t-T.f+Y.]cos[uü  t+i(t-T.) + y.]dt 
•J« -1 —J oo 1 J •   C        A 1 1 C       £ j j 

= i   [   a(t-T  )a(t-T )cos[ut(T-T )- y.(T2-T2) + (Y.-Y.)]dt 

_E .   r..,_    - v    U,_2   .2, 
[TTTTTI sinfut^.-T.). 7(T. -T.  ) + (YrYj)] 

J      x x 

We make use of manipulations which have already been performed to write 

the expression as 

00 
r 2E v    .    rU 

B(t;a.)s(t;a,)dt = UT(T -T   ) COS(Y.-Y )sin{^(T -^ )(T -  |T-T |)} 
_s J io 

The other terms in the exponent can be evaluated from this quantity to give 
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B .  = exp — < I   - -1=1 r cos Y-Y   )sin[^-(T.-T   )(T -     T.-T       ] 11 FN    J UT(T.-T  ) v   1     o'       LZV   l     oM '    l     o,/J 
J o( 1    o 

T(T-T   )cos(Y,-Yo)sin[^(T.-To)(T-lT.-TQl)] 
J      o 

^-^ cos(Yj.Yi) sin[£(T.-T.)(T- |T.-TJ)]J +  UT(T.-T.)   —«Mj-Tt/  —L2 x-j--/^ -   i "j-'ii'Ji (C-32) 

The last quantity needed in the evaluation is the $-matrix and this is 

given simply by 

4 VTo\      fT2-To\ (Ta-To 

,VYo/      \Y2-Yo/ \Yn-Yo/J (C-33) 

Some simplification can be achieved by manipulating the expression which 

keeps recurring in all of the formulae,   namely 

^2 (T.-T ) r     i T.-T   n 

For the linear FM signal,  u = 2irAf/T where Af represents the signal band- 

width and therefore uT    = 2-rrAf   T where T  Af is the time bandwidth product. 

Let us make the definition 

ß = 2TTAf. T (C-34) 

so that the key angle can be written as 

a T-"T / T.-T        \ 

2 T~ \l ~ T     / (C-35) 

Similarly we can write 
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m ™2      T.-T 0    T.-T MT uT    ^  _j o = £  _j o_ 
-2"(Tj-To; ~~7T        T        2        T (C-36) 

and 

1   ±l--l  Ti+      ! 
T.-T T  "    "   T + 2(T.-T    ) 

J     o J     o 

and finally 

T{rj-To>    "T   T\T-i   -T'7\    T~/ (C-37) 

We next define the normalized delay difference 

T.-T 

ATj-"T- (C-38) 

and phase difference 

AY-  = Y.-Y„ (C-39) 

and use the above relations to rewrite the matrices in the following more 

compact notation: 

Ai3 = 4 # aij      i=i.2; j-i.2 a (c40a) 

where 

u = (±z + jzr-)  cosAY. ' cos[| AT (1  -   ]AT  ])]+ l        cosAY,sin[|AT.(l-|AT.|)] 
J      V j ' J J J S-(AT.) J ^     J J 

(C-40b> 

i2. = -^-  sinAYj sin[|AT.(l -   ! AT. | )] (c_40c) 

where the   + sign corresponds to AT.   >   0. 
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E 
B..  = exp ^   b.. i=l,2,...,n 

lJ No    lJ lj (C-41a) 

where 

b.. =  1  -   -5-1—  cosAy. ' sin[|AT.(l  -   |AT.|)]- ^—   cos Ay. sin[f AT.(1- | AT  |)] 
7AT. - -       * £AT. 

+ 75   cos(Ay.-Ay.) sin[^(AT -AT  )(1 -   |AT.-AT.|)] 
f(AT.-Ar.) l       J *      *      J i       J 

It was stated in Eq.   (3-6) that the error covariance matrix was lower 

bounded by 

I =  A"1 + ($ - /\_1A)A_1($ - A_1A)' 

A = B - A' A"1 A (C-42) 

-1 2   2       1 2 ^     R 
The A      -matrix is given by Eq.(C-lO),  but since u   T    = —^ (UT   )    = -*-y   we can 

T T rewrite that equation to give 

A"1 

E/N o 

(C-43) 

Then 

_    ,  Tall' Tal2' ••" Taln 
hj 

I 
a2T       a22'""      a2. 

'l2T 12T 12T  a 

3T
air    -^-al2'-^-aln 

a21 a22 a2n/ (C-44) 
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Then 

7T  ail a21 

T  a12 a22 

o. 
al n a2n, 

A-XA 

A2 12 
rT7allall+a2la2l' T2allal2+a21a22' ' 

P P 
El    12 12 
N~[   7Zal2all+a22a2r 7Zal2ai2+a22a22" 

P P 

12 
•'7Z'ailaln

+a2ia2n 
P 
12 

•'72al2aln+a22a2n 

12 , 12 12 
^alQ

aira2na2r77alnal2+a2na22' ' ' *'72aln a 1 n+a2 n
a2 

P P 

and therefore 

o N 6 / 

where a, , a» are vectors whose i      rows are   the elements a. .,   a»,  respectively. —1—2 li       2i r 7 

Therefore the A-matrix is given by 

A = B - E 
N (;Z±l±l'+£2±z') o vß (C-45) 

an expression which depends only on the parameters E/N    and ß, 

Next we consider the matrix 

(* - A-1A)     = cp i=l,2; 3 = 1,2,..., n 
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From Eqs.   (C-33) and (C-44) we see that 

co      = (T.-T   ) - 1"   a.. 

2J J     o 2J (C-46) 

It was stated that the lower bound on the error covariance matrix was 

given by 

E(e-eo)(e-eo)/  SE 

This means that for every vector I, 

I     E(9_-9_   )(§ -9   )' > lT Z I 

In particular,   when 9  = (T , y)     and when I = (1, 0)    ,  we get a lower bound on 

the mean-squared delay error when the channel is incoherent.    Applied to 

Eq.   (C-42) using Eqs.   (C-43),   (C-45),   and (C-46),  we find that 

7        n        n 
2 1 T T        V 

° E/No     0 .^,      ._.    ll    1J    1J (C-47) 

fVi 1 
where 6.. represents the ij      element of A"   .    We can normalize this result 

XJ 2 
with respect to the time scale by dividing by T   ,  which leads to the expression 

N    N 
1   _,*   w   .2>      1 12 ,    V    V   *li  A      ^1" 

-2E^T-V    = E7N- -^+   I    I   — 6ij   -T 
T °     0       i=lj = l 

T.-T 1 l      o 12 

where now 

Let us set 

Acp. = -= cp, . = AT. - —T  a.. 
1      T    ll x      ^      ll (C-48) 
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2 
so that we obtain the following lower bound for the normalized delay error G    : 

n      n 

aT = ETN-  72 +   i   I   Acpi 6ij Acpj 
°     ß i=l  j = l (C-49) 

where Acp.  is given by Eq.   (C-48),   6..  = (A"   ).. where A is given by Eq.   ( C-45). 

The latter matrix involves a..,   a».,   b.. which are obtained from Eqs.   (C-40) h       Zi'      ij ^ 
and (C-41) respectively. 

54 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 

I.    ORIGINATING   ACTIVITY   (Corporate author) 

Lincoln Laboratory, M.I.T., 

2a.    REPORT   SECURITY   CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 
3.    REPORT   TITLE 

Barankin Bounds on Parameter Estimation Accuracy Applied to Communications 
and Radar Problems 

4.    DESCRIPTIVE   NOTES  (Type of report and inclusive dates) 

Technical Note 

5.    AUTHOR(S)  (Last name, first name, initial) 

McAulay, Robert J. and Hofstetter, Edward M. 

6.  REPORT DATE 

13 March 1969 

7«. TOTAL NO. OF PAGES 

60 

7b. NO. OF REFS 

4 

8«. CONTRACT OR GRANT NO. 

AF 19(628)-5167 
b.    PROJECT   NO. 

9a.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Note 1969-20 

9b.    OTHER   REPORT   NO(S)   (Any other numbers that may be 
assigned this report) 

ESD-TR-69-49 

10.    AVAILABILITY/LIMITATION   NOTICES 

This document has been approved for public release and sale; its distribution is unlimited. 

11.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY   ACTIVITY 

Department of the Army, 
Office Chief Research and Development 

13.    ABSTRACT 

The Schwartz Inequality is used to derive the Barankin lower bounds on the covariance matrix of unbiased esti- 
mates of a vector parameter.   The bound is applied to communications and radar problems in which the unknown 
parameter is imbedded in a signal of known form and observed in the presence of additive white Gaussian noise. 
Within this context it is shown that the Barankin bound reduces to the Cramer-Rao bound when the signaL-to-noise 
ratio (SNR) is large.   However, as the SNR is reduced beyond a critical value the Barankin bound deviates rad- 
ically from the Cramer-Rao bound thereby exhibiting the so-called threshold effect. 

A particularly interesting signal, which has been widely used in practice to estimate the range of a target, is 
the linear FM waveform.   The bounds were applied to this signal and within the resulting class of bounds it was 
possible to select one which led to a closed form expression for the lower bound on the variance of the range esti- 
mate.   This expression clearly demonstrates the threshold behaviour one must expect when using a nonlinear 
modulation system. 

Tighter bounds were easily obtained but these had to be evaluated using numerical techniques. It is shown that 
the side-lobe structure of the linear FM compressed pulse leads to a significant increase in the variance of the es- 
timate. For a practical linear FM pulse of 1 microsecond duration and 40 megahertz bandwidth it is shown that the 
radar must operate at an SNR greater than lOdB if meaningful range estimates are to be obtained. 

14.    KEY   WORDS 

Barankin bounds 
Schwartz Inequality 
c ommunications 
radar techniques 

parameter estimation 
Gaussian noise 
signal-to-noise ratio 

thresholds 
linear FM 
nonlinear modulation 

55 UNCLASSIFIED 

Security Classification 








